

IPPW SHORT COURSE

The process:

We got selected, now we have to build it, show it works!

Discovery and Surprise - Expected and Unexpected Science from Planetary Probes David Mimoun, ISAE Associate Professor, SEIS Project Scientist

Contributions from Ph. Lognonné (IPGP), B. Banerdt (JPL), M. Golombek(JPL)

JUNE 15, 2014

- At the dawn of the age of planetary exploration, seismology was considered a key technique for understanding a planet.
 - The first instruments sent to the surface of another planet were seismometers.
 - Rangers 3-5, 1962
 - The two highest scientific priorities of the Apollo program were sample return and seismology.
 - Apollos 11,12,14,15,16, 1969-1977
 - The first landers on Mars carried seismometers.
 - Viking 1,2; 1975-1977
 - 19 months of operations
 - 10^-6 m/s^2/√Hz sensitivity
 - 1 failed, one measured the wind

- At the dawn of the age of planetary exploration, seismology was considered a key technique for understanding a planet.
 - The first instruments sent to the surface of another planet were seismometers.
 - Rangers 3-5, 1962
 - The two highest scientific priorities of the Apollo program were sample return and seismology.
 - Apollos 11,12,14,15,16, 1969-1977
 - The first landers on Mars carried seismometers.
 - Viking 1,2; 1975-1977
 - 19 months of operations
 - 10^-6 m/s^2/√Hz sensitivity
 - 1 failed, one measured the wind

NASA

- At the dawn of the age of planetary exploration, seismology was considered a key technique for understanding a planet.
 - The first instruments sent to the surface of another planet were seismometers.
 - Rangers 3-5, 1962
 - The two highest scientific priorities of the Apollo program were sample return and seismology.
 - Apollos 11,12,14,15,16, 1969-1977
 - The first landers on Mars carried seismemeters
 - Viking 1,2; 1975-1977
 - 19 months of operations
 - 10^-6 m/s^2/√Hz sensitivity
 - 1 failed, one measured the wind

NASA

Why planetary seismology

Apollo heritage

Grand Tack scenario: late heavy bombardment -

Water abundance initial conditions

(S Raymond, K. Walsh)

Planetary Seismology tells the story of the solar system

Seismology basics

 Seismology use the transmission of waves through various materials to derive the structure of the medium seen along the path

What is a seismometer?

- * A seismometer is just a (very) long period, very, very sensitive accelerometer which measures the ground motion...It is most of the time based on analog measurements: no « cool factor » ... (e.g no laser shooting, no 3D image)
- * However ...
 - Visible IR Imagers, Spectrometers: first microns
 - Neutrons : up to a meter
 - * GPR : meters to km (best cases)
 - * Seismometers: sounding down to the planet core
- Seismology with several stations (e.g Apollo, Netlander): sounding with "classical" ray inversion
- Seismology with one station (like Insight)

Historical Context: Most recent efforts

CREDITS CNES, ESA

* Since Viking, despite continuous efforts, no geophysical mission has made its way to Mars

DILBERT

WELL, AT LEAST YOU'RE

PREPARED

FOR YOUR

MEETING.

BY SCOTT ADAMS

Copyright © 1997 United Feature Syndicate, Inc.

IT WAS

CANCELED.

* Since Viking, despite continuous efforts, no geophysical mission has made its way to Mars

From GEMS(06) to Insight

From GEMS(06) to Insight

- 2010 Discovery Proposal
- * PI: W.B.Banerdt

- June 2011 Step 1 selection
- * August 2012 Step 2 selection

Understand the formation and evolution of terrestrial planets through investigation of the interior structure and processes of Mars.

Directly Addresses NASA SMD and 2011 Decadal Survey Objectives:

 "Understand the origin and diversity of terrestrial planets."

 "Understand how the evolution of terrestrial planets enables and limits the origin and evolution of life."

InSight Mission

- * InSight will fly a near-copy of the successful Phoenix lander
- * Launch: March 4-24, 2016 from WANDENBERG

* Nominal end-of-mission: October 6, 2018

Spacecraft configuration

InSight Spacecraft: Cruise Configuration FIRED SCHAR PARKE 2 PLCS SUA SENSOR 2 PLCS SUA SENSOR 2 PLCS

3 instruments: a focused payload

THE DAY BEFORE: THE SITE VISIT: HARD WORK

Bad Food (no time)

YOU WILL FIND HAPPINESS IN MIND & HEART

PANDA EXPRESS • PANDA INN

Rehersal ...
Rehersal ...

The day after

"It's time we face reality, my friends. ... We're not exactly rocket scientists."

The Day after selection: even more work

		Phase	Purpose	Typical Output	
Step 1		Pre-Phase A Concept Studies	To produce a broad spectrum of ideas and alternatives for missions from which new programs/projects can be selected. Determine feasibility of desired system, develop mission concepts, draft system-level requirements, identify potential technology needs.	Feasible system concepts in the form of simulations, analysis, study reports, models, and mockups	
Step 2	Formulation	Phase A Concept and Technology Development	To determine the feasibility and desirability of a suggested new major system and establish an initial baseline compatibility with NASA's strategic plans. Develop final mission concept, system-level requirements, and needed system structure technology developments.	System concept definition in the form of simulations, analysis, engineering models, and mockups and trade study definition	
Development		Phase B Preliminary Design and Technology Completion	To define the project in enough detail to establish an initial baseline capable of meeting mission needs. Develop system structure end product (and enabling product) requirements and generate a preliminary design for each system structure end product.	End products in the form of mockups, trade study results, specification and interface documents, and prototypes	
PDR		Phase C Final Design and Fabrication	To complete the detailed design of the system (and its associated subsystems, including its operations systems), fabricate hardware, and code software. Generate final designs for each system structure end product.	End product detailed designs, end product component fabrication, and software development	
CDR	Implementation	Phase D System Assembly, Integration and Test, Launch	To assemble and integrate the products to create the system, mean- while developing confidence that it will be able to meet the system requirements. Launch and prepare for operations. Perform system end product implementation, assembly, integration and test, and transition to use.	Operations-ready system end product with sup- porting related enabling products	
AILO		Phase E Operations and Sustainment	To conduct the mission and meet the initially identified need and maintain support for that need. Implement the mission operations plan.	Desired system	
		Phase F Closeout	To implement the systems decommissioning/disposal plan developed in Phase E and perform analyses of the returned data and any returned samples.	Product doseout	

Mission can be stopped at any of the red triangle

(NASA systems engineering Handbook)

Various points of view

Building an instrument requires several points of view

A small number of lessons learned (and it's not the end of the story)

- * Build strong requirements
- Build strong development plan with ample margins
- * Pass early shock and vibe tests integrate early subsystems
- * Use space qualified parts early in the design (if possible)
- Plan early the validation and verification strategy
- * Make an instrument that can be tested on Earth (as far as possible)
- It's a lot of work: have a good team and keep the good team spirit in all circumstances

Build strong requirements

- Strong missions and instrument requirements are the key to a successful project
- * It's not only « paperwork » or wasted time. A good or bad set of requirements will enable good communication with the team actually building the instrument or the mission. It drives the mission cost very early
- * It must be understandable and verifiable by anyone not familiar with the science details: this is what *will* happen eventually
- * Small is beautiful: a good requirement document is a document where you cannot delete something

A strong and robust science case is required

Because you have no assurance that everything will be fine ...(*)

The performance flowdown drives the requirements

You need a good model for performance reconstruction

Key Vertical Requirements flowdown - Performance CBE

L1 Requirement	L2 Requirement	CSR Capability	CSR Margin	CDR Margin
L1-SCI-41 Determine the depth of the crust-mantle boundary to within ±10 km	L2-PSRD-191: Measure Rayleigh wave group velocity dispersion to ±5% for at least 2 quakes with SNR≥3 on R3 wavetrains.	13 quakes	550% (quakes)	=350% (quakes)
L1-SCI-42 Detect velocity contrast ≥0.5 km/sec over depth interval ≥5 km within the crust, if it exists.	L2-PSRD-192: Measure group velocity dispersion to ±4% for at least 3 quakes with SNR≥3 on R3 wavetrains.	13 quakes	330% (quakes)	=200% (quakes)
L1-SCI-43 Determine seismic velocities in the upper 600 km of the mantle to within ±0.25 km/sec.	L2-PSRO-193: Measure P and S arrival times to ±2 sec, and R1 and R2 arrival times to ±15 sec for at least 13 quakes.	30 quakes	130% (quakes)	≈50% (quakes)
L1-SCI-45 Positively distinguish between liquid and solid outer core	L2-PSRD-205: Measure the Phobos tide amplitude to ±2.5×10 Tm/s².	±7×10 ⁻¹² m/s ²	250%	Secondary to RISE Under assessment

The models are the "glue" to tie elementary performances to mission performance

Development plan needs ample margins

Development plan must must

be setup carefully to match

mission objectives

and ressources

EQM can sometime be considered as schedule margin

Qualified parts

- * Use qualified parts early in the design
- You cannot base your design on regular performance parts
- * Space qualified parts are very limited in number and are low performance
- Qualification of new parts is lengthy and costly

13 pages (only)

Space Qualified Parts List

Factory Contacts:

Tony Mercado (336) 605-4080, anthony,mercado@analog.com Chris Leonard (336) 605-4385, chris.leonard@analog.com Bob Barfield (336) 605-4063, bob.barfield@analog.com FAX # (336) 605-4048

Address:

Analog Devices, Inc.
7910 Triad Center Drive
Greensboro, NC 27409
USA
http://www.analog.com/aerospace

Shock and vibe early

* Science instruments are often very fragile, and a mechanical weakness is likely to have severe impact on the design

Integrate subsystems early

- * Most of the time, science probes are the result of an international collaboration
- * Example: ChemCam (Los Alamos Laboratories, IRAP) or SEIS (F, UK, D, CH, US)
- * Issues in the interfaces can happen
- * The sooner they are detected, the better

Plan early the validation process

* What is the VnV ?

* Verification and validation

* Why plan early?

Make an instrument that can be tested on Earth

Apollo 17 gravimeter could not operate on the Moon due to a flaw in the design

Tight Schedule for SEIS

VBB Qual. Model

VBB 6 Pivot cabling

SP EM Sensor and Electronics

Tight schedule also for the

mole

Support Structure EM in Vibration Testing

Mole Pre-Protoflight Model

Geothermal Test Bed (GTB) @ JPL

Pre-PFM assembled

Where are we today

- * Passed PDR and Confirmation Review
- * In Development and Fabrication
- * On Budget Reserves Exceed NASA Guidelines
- * On Schedule Margins Exceed what Proposed
- * Instrument & System Capabilities Exceed All Science Reqs
- * May 2014: Critical Design Review
- * October 2014: System Integration Review
- * January 2015: Deliver instruments to ATLO
- * Participating Scientist Program
- * ~dozen new scientists before launch
- * November 2015: Confirm landing site
- * December 2015: Ship to Vandenberg
- * March 2016: Launch
- * September 2016: Landing
- * October 2018: End of primary mission

It's a lot of work: keep team spirit at all costs

And maybe ...

132 AD

Chang Hêng, first seismoscope on Earth (132 AD)

1889 AD

Von Rebeur-Pacshwitz (Nature, 1889), first seismogram on Earth (M~5.8 in Japan recorded in Postdam) 2016 AD?

2

First quake detected on Mars